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Abstract— In this paper we describe a multiplayer brain-
computer interface (BCI) based on the classic game of checkers
using steady-state visually evoked potentials (SSVEPs). Previous
research in BCI gaming focuses mainly on the production of
software-based games using a computer screen—few hardware-
based BCI games using a physical board have been developed.
Hardware-based games can present a unique set of challenges
when compared to software-based games. Depending on where
the user is sitting, some stimuli might be farther away from
the player, at a steeper viewing angle, conflated with competing
stimuli, or occluded by physical barriers. In our game, we
light squares on a checkerboard with flickering LEDs to elicit
SSVEP responses in the subjects. When a subject attends to
a particular square, the resulting SSVEPs are classified and a
robot arm moves the selected piece. In a set of pilot experiments
we investigated the ability of two subjects to use the SSVEP-
based hardware game platform, and assessed how interstimulus
distance, interstimulus angle, distance between target stimulus
and subject, number of competing stimuli, and visual occlusions
of the stimuli influence classification accuracy.

I. INTRODUCTION

Brain-computer interfaces (BCIs) allow users to control
external devices based solely on changes in brain activity.
Since BCIs do not rely on the motor system, they provide
severely paralyzed or locked-in individuals with a means
to communicate [1]. The majority of BCIs rely on the
measurement and classification of event-related potentials—
electrical activity generated given specific events in the
environment around the user—using electroencephalography
(EEG). One commonly studied event-related potentials is the
steady-state visually evoked potential (SSVEP). SSVEPs are
elicited when a user focuses his attention on a flickering
visual stimulus appearing at a frequency between 1-100Hz
[2]. This focus in attention causes an entrainment between
the user’s neural activity and the attended stimulus, which
can be detected in the frequency domain.

Since SSVEPs are dependent on attention, it is possible for
users to select a target stimulus from a set of simultaneously
presented flickering stimuli. This property is used in SSVEP-
based BCIs to determine user selections. There are several
advantages to SSVEPs compared with other BCI paradigms.
SSVEPs require little to no pre-run classifier training and
have higher information transfer rates than BCIs based on
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Fig. 1. Overhead view of the SSVEP checkers system with two subjects
sitting on either side of the LED stimulus checkerboard. The robot arm is
used to pick and place pieces.

the P300 (a neural response to infrequent stimuli) or motor
imagery (imagined left/right movements) [3]. As a result, a
wide range of SSVEP-based BCIs have been developed for
a diverse set of applications, from controlling a rehabilitative
arm [4], to driving a small car [5], [6], to playing games [7].

Considering the use of SSVEP-based BCIs for games,
Lalor et al. [7] developed the first SSVEP-based game. This
game, MindBalance, challenged a single-player to help a
character cross a tight-rope. Periodically, the character would
stumble, requiring the user to select targets using SSVEP. In
2007 Martinez et al. [8] developed Free Race, an optimized
SSVEP game for navigating a car around a track. This game
demonstrated the speed at which an SSVEP-based game
could perform. In 2010 Mühl et al. [9] developed a hybrid
BCI game, using both SSVEP and alpha neurofeedback as
a part of the gaming experience. Recently, Maby et al. [10]
explored how BCIs could increase the fun of classic games,
demonstrated through an implementation of Connect Four.

Despite the proliferation of SSVEP-based games, they are
predominantly implemented using software. This limits users
to playing in front of monitors, which might not always be
desirable. Through the use of wireless EEG hardware and
LEDs, there is no reason that SSVEP-based games could
not be developed for more traditional table-top settings.
Hardware-based games present a unique set of challenges
when compared with software-based games. Depending on
where the user is sitting, some stimuli might be farther
away from the player, at a steeper viewing angle, conflated
with competing stimuli, or occluded by physical barriers. To
determine whether these factors influence user performance,
we developed a BCI version of the classic game of checkers.



Fig. 2. A flowchart depicting the stimulus presentation, data acquisition, signal processing, classification, and end effector processes for two players.

Our game allows two players to compete using a single set
of shared SSVEP stimuli. A robotic arm is used to move
the pieces, allowing the entire game to be played using
only EEG. In a set of pilot experiments we investigated the
ability of two subjects to use the SSVEP-based hardware
game platform, and assessed how interstimulus distance,
interstimulus angle, distance between target stimulus and
subject, number of competing stimuli, and visual occlusions
of the stimuli influence classification accuracy.

II. METHODS

A. Subjects & Environment

Data were collected from 2 healthy participants (1 male
and 1 female) both in their 20s. The subjects were seated in
a room with dim lighting about 75-85cm above the stimuli
with viewing angles of 40-60◦ below the horizon (Fig. 1).

B. Setup

A flowchart describing the overall system design for two
players is shown in Fig. 2. A 6x4 checkerboard with each
square housing a single white LED was used to produce the
stimuli (Fig. 3). The Plexiglas layer on top of the LEDs was
divided into 24 squares, with each square having an outer
border of 9cm and an inner border of 5.5cm, leaving a 5.5cm2

area for the subject to observe the stimulus. Eight Plexiglas
game pieces were developed, each was a bottomless cube
of 5.5cm3 with edges painted red or black. The pieces were
clear in order to minimize the obstruction of the stimuli when
they were placed on the game board.

Since SSVEPs generated by stimuli in the upper alpha
wave region (10-13Hz) provide the greatest signal-to-noise
ratio (SNR) [5], [6], [11] our game utilized white LEDs
flickering at 10, 11, 12, and 13Hz. A duty-cycle of 40%
was chosen, because it has been previously demonstrated to
maximize SNR [12]. Stimuli indicated the moves available

(a)

(b)

Fig. 3. The LED checkerboard and robot arm (a) and the pieces (b).

to a player on a given turn, with between two to four LEDs
lit at a time. When only one move is available, the system
automatically makes the move without user input. EEG was
measured from electrodes placed at seven recording sites
(PO3, PO4, PO7, PO8, O1, O2, Oz) over the visual cortex
according to the 10-5 international system. Electrodes were
referenced to the vertex and grounded using an ear-clip. The



signals were amplified by a James Long Biosignal Amplifier
before being recorded and analyzed using BCI2000 [13]. All
data were acquired in blocks of 8 samples at a rate of 256Hz.

C. Feature Extraction and Classification

Feature extraction and classification was done using
BCI2000’s MATLAB Filter. To reduce false positives during
the game, the available stimuli were lit for two seconds
before signal processing and classification began. Spatial
filtering was performed by taking 4 Laplacian derivatives
as outlined in [5], [6], shown to maximize the SSVEP signal
with Oz as the location of interest.

A 4096-pt FFT was taken over each Laplacian. Since it
has been shown that EEG can discriminate SSVEP up to
0.2Hz [11], a ratio of peak power to average noise level was
calculated by finding the peak power over 6 bins centered
around the first harmonic (i.e. stimulus frequency ± 0.18Hz)
of the target frequencies (10, 11, 12 and 13Hz) then dividing
the peak value by the average power of the remaining signal
between 9.8Hz to 19.8Hz. The range 9.8Hz to 19.8Hz was
chosen to exclude extraneous power resulting from lower-
band alpha activity [11] and higher-order harmonics [2]. To
classify the signal, the mean of all four ratios must pass a
threshold value of 5, determined a priori. In other words, on
average, the signal peaks must be 5 times greater than the
noise in order to be classified. If none of the ratios for the
four frequencies reach the threshold within 20 seconds, the
signal processing and classification was restarted.

Following classification, the target selection was sent to
the logic and network controlling program. This program
coordinated the checkers logic, whose turn it was, which
stimuli were lit, and the movement of the robot arm (Rhino
XR-3, Mark III Controller). For each move, we recorded the
classification and the spatial configuration of the stimuli.

III. RESULTS

The performance results for the two subjects are shown in
Table I. The subjects completed four games with a varying
number of selections per game and per person. Overall,
Subject 2 (92.2% accuracy) performed better than Subject
1 (72.9% accuracy). A total of 98 selections were made by
both players, with 17 errors total.

Among the 17 errors, the distances between the target and
misclassified stimuli, as well as the angle between them is
shown in Fig. 4. The angles range from 0-360◦, with 0◦

meaning that the misclassified stimulus was located in the
same row to the right of the target stimulus. In 9 of the
17 errors, the misclassified stimulus was located closer to
the subject than the target stimulus. On average the distance
between the subject and the target stimulus was 95.2±8.0cm,
ranging from 85.2-114.6cm. The average distance between
the subject and the misclassified stimulus was 93.9±8.2cm,
ranging from 85.4-108.0cm. There were no general trends in
any of these cases.

Of the 98 selections made, 73 of them involved selecting a
square with a piece placed above it, and the other 25 involved
selecting an empty square. An analysis of the classification

TABLE I
PERFORMANCE RESULTS FOR THE TWO SUBJECTS OVER ALL GAMES

PLAYED. ERRORS ARE DEFINED AS WHEN THE CLASSIFIER DID NOT

CORRECTLY SELECT THE TARGET STIMULUS.

Subject Number of Selections Number of Errors Accuracy
Subject 1 47 13 72.3%
Subject 2 51 4 92.2%

Total 98 17 82.7%

errors revealed that in every error that occurred, the stimuli
had pieces placed over them (i.e. the subject was selecting
which piece to pick up). Furthermore, the majority of these
errors were made when there were more than two stimuli on
at the same time. Out of the 57 two-stimulus choices, only
6 were errors—compared to 11 out of the 41 choices with
more than two stimuli.

Accuracy by Distance and Misclassified Stimulus Angle
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Fig. 4. Donut plot showing the classification accuracy for combinations of
the distance and angle between the target and competing stimuli. Each users’
selections were divided into 3 interstimulus distance ranges, increasing along
the radius of the donut, and 8 interstimulus angles, increasing around the
circumference of the donut. An interstimulus angle of 0◦ means that the
misclassified stimulus was located in the same row to the right of the
target stimulus. The numbers within each of the 24 regions represents the
total number of selections for that particular combination of interstimulus
distance and angle, while the color represents the classification accuracy.

IV. DISCUSSION

The subjects were successfully able to select squares
on the board and were able to play through full games.
Furthermore, the users were able to achieve relatively high
accuracy for an SSVEP-based BCI [5], [6]. However, one of
the subjects did perform better than the other. This could be
attributed to the fact that Subject 2 had more experience
using SSVEP than Subject 1. Also, studies suggest that
females (Subject 2) may be better at generating SSVEPs
than males (Subject 1) [14]. Regardless, Subject 1’s 72.3%
accuracy rate suggests that even users with little to no
experience with SSVEP can still achieve decent performance.



Interstimulus distances and angles, as well as the distance
between the subject and the stimuli could also influence the
signal classification. Fig. 4 does not show any consistent
trend. However, there were not enough error cases for each
of the configurations to truly determine whether there is a
significant relationship between classification accuracy and
interstimulus distance or interstimulus angle. In regard to
the distance between the user and the target stimulus, even
though closer LEDs appear brighter in the visual field,
Valbuena et al. found that there was no difference in clas-
sification between LEDs placed either 50 or 70cm from the
subject [4]. While our participants were seated slightly more
than 70cm from the stimuli, the data does not show a trend
that favors any particular distance to the target stimuli.

The decrease in classification performance that occurred
when there were more than two stimuli on at the same time
is supported by literature. Stimuli that resonate at frequencies
in the upper alpha wave region compete for neural resources
in the brain, which results in less neurons firing at the same
frequency as the target stimulus, and a lower peak SSVEP
power [15]. Increasing the number of competing stimuli in
the upper alpha region further decreases the peak SSVEP
power for the target stimulus in that region.

The fact that all of the errors occurred when the pieces
were placed over the square is an important point. Even
though subjects could see the LED through the piece because
it was made out of Plexiglas, the reflection of the light off of
the sides of the cube could have interfered with perceiving
the stimulus at a time-locked and phase-locked frequency.
This reflection could have also reduced the amount of light
to reach the eye, thereby reducing the power of the resulting
SSVEP. High amounts of environmental light may also be a
negative contributor to the accuracy of SSVEP. In prelimi-
nary runs under bright environmental lighting settings, sig-
nals appeared noisier. The noise generated by environmental
light would make it harder to discriminate signal peaks from
the background noise. Additionally, it reduces the apparent
brightness of the LEDs. In order to increase the accuracy
of a system like the one presented, techniques such as blind
source separation [16] and minimum energy [17] could be
used to separate the noise from the SSVEP peak frequencies.

V. CONCLUSIONS AND FUTURE WORK

We have developed a multiplayer interactive hardware
game platform for SSVEP-based BCIs. We detailed the
implementation of the system from its LED inputs, to the
data acquisition from the subject, to the signal analysis and
classification, to controlling the robot, and then finally to the
next player’s turn. Additionally, we discussed the influence of
interstimulus distance and angle, distance of the target stimuli
to the subject, the number of competing stimuli, and visual
occlusion of the stimuli. Future work will involve a more
comprehensive study with larger sample sizes to determine
whether these factors significantly influence classification.
Finally, our hardware-based approach is not limited to gam-
ing. By adding LEDs, SSVEP-based interaction could be
enabled in a multitude of existing hardware systems.
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