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Abstract— Current state-of-the-art upper limb myoelectric
prostheses are limited by only being able to control a single
degree of freedom at a time. However, recent studies have sep-
arately shown that the joint angles corresponding to shoulder
orientation and upper arm EMG can predict the joint angles
corresponding to elbow flexion/extension and forearm prona-
tion/supination, which would allow for simultaneous control
over both degrees of freedom. In this preliminary study, we
show that the combination of both upper arm EMG and shoul-
der joint angles may predict the distal arm joint angles better
than each set of inputs alone. Also, with the advent of surgical
techniques like targeted muscle reinnervation, which allows a
person with an amputation intuitive muscular control over his
or her prosthetic, our results suggest that including a set of
EMG electrodes around the forearm increases performance
when compared to upper arm EMG and shoulder orientation.
We used a Time-Delayed Adaptive Neural Network to predict
distal arm joint angles. Our results show that our network’s
root mean square error (RMSE) decreases and coefficient of
determination (R2) increases when combining both shoulder
orientation and EMG as inputs.

I. INTRODUCTION

Current state-of-the-art upper limb myoelectric prostheses
are limited in their ability to reach using coordinated joint
movements. Generally, most multifunction prostheses use a
mechanical switch to control individual degrees of freedom
(DOFs) sequentially. This process usually allows for control
of 2 degrees of freedom and more mentally burdensome
systems are often abandoned by patients. However, there has
been significant progress made by Kuiken, et al, through the
use of targeted muscle reinnervation, a technique that restores
control sites to high-level amputees from which electromyo-
graphic (EMG) signals may be measured. Such systems
allow for two degrees of freedom–the elbow and a hand
open/close–to be controlled simultaneously [1], or up to 10
different movements sequentially using pattern recognition
[2]. These EMG-based neuroprostheses are limited in their
ability to control coordinated elbow and wrist movements
which are required in many activities of daily living, such as
in reaching.

A recent study by Pulliam, et al used EMG record-
ings from the upper arm and chest to predict the angles
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Fig. 1. Stem plot of 226 targets within subject’s reaching workspace. Blue
dots represent the target while the red dot represents the subject’s shoulder
center.

of the elbow and forearm simultaneously [3]. Specifically,
they implemented a Time-Delayed Adaptive Neural Network
(TDANN) to predict the angles of elbow flexion/extension
and forearm pronation/supination [4], [5]. Their results
showed that across multiple types of reaching movements
(single-joint movements, single-joint movements with a load,
simultaneous DOF movements, and activities of daily living),
the network could on average predict elbow flexion/extension
within 10-15◦ and forearm pronation/supination within 20-
25◦ of their actual values.

A separate study by Kaliki, et al suggests that when
reaching, distal arm kinematics can be predicted by using
shoulder orientation as the input to a neural network [6].
In this study, subjects were seated and asked to reach to a
vertical handle that moved to uniformly distributed positions
in the subjects reaching workspace. Motion capture was
used to determine the joint angles at the shoulder, and their
network resulted in R2 values above 0.7, denoting a strong
correlation.

Our study aims to improve the prediction of distal arm
kinematics by using the combination of shoulder orientation
and EMG from the upper arm as inputs. In addition, we also
hypothesize that by adding EMG inputs on the forearm, we
will achieve a smaller RMSE and a greater R2 since we
retain information from distal arm musculature involved in
reaching (as it would be with a targeted muscle reinnervated
patient).

II. METHODOLOGY

A 25-year old unimpaired adult male volunteered for the
reaching experiment. His physical measurements were taken



and his reaching workspace was partitioned as in [6]. This
resulted in 226 reaching targets (Fig. 1). The subject was
seated in a chair in front of an Adept One SCARA robot arm
(Adept Technology, Inc., Pleasanton, CA) used to present
the targets to the subject. Attached to the robot arm’s end
effector was a vertically oriented handle for grasping. For
the safety of the subject, the robot arm was restricted from
moving within 25 cm from the subject’s shoulder center
along the global x-axis. Starting with the forearm on an
arm rest, palm down, elbow bent at 90◦ with respect to
the humerus, the subject was instructed to push a button to
trigger simultaneous recording of EMG and motion capture,
and to reach to and hold a vertical handle at a normal pace.
After 5 seconds, the subject was instructed to let go of the
handle and return to the arm rest. As soon as the subject
placed his arm on the arm rest, he was instructed to push a
button to stop the recording of the trial.

A. Experimental Setup

Using a DelSys 16-channel Bagnoli system, 13 bipolar
surface EMG electrodes were positioned on the subject’s
arm: 6 equidistant around the circumference of the forearm,
2 on the long and short heads of the biceps, 2 on the long
and lateral heads of the triceps, and 3 on the anterior, middle,
and posterior deltoid (Fig. 2). The subject wore a wrist brace
to restrict movement of the wrist during reaching tasks.

An OptiTrack motion capture system (NaturalPoint, Inc.,
Corvallis, OR) was used to determine the location of bony
landmarks. Specifically, reflective markers were placed over
the radial styloid, ulnar styloid, lateral epicondyle, olecranon,
and acromion. From the locations of these markers, the
angles for the shoulder, elbow, and forearm were calculated
according to ISB standards [7]. Rotation about the global x,
y, and z axes corresponded to shoulder abduction/adduction,
internal/external rotation, and flexion/extension, respectively.
Rotation about the forearm’s y-axis (lateral epicondyle to
ulnar styloid) corresponded to forearm pronation/supination,
and rotation about the forearm’s z-axis (radial styloid to ulnar
styloid) corresponded to elbow flexion/extension. Clinically
meaningful Euler angles were extracted to determine the
orientation for the shoulder (YXY) and the forearm (ZXY)
according to ISB standards. A hardware trigger was used to
sync the recording of motion capture and EMG data.

B. Data Processing

All data were processed using MATLAB (MathWorks,
Inc., Natick, MA). EMG data were recorded at 1000Hz.
After acquisition, the data were filtered with a 5th-order
Butterworth high-pass filter with a cutoff frequency of 10Hz
to remove movement artifacts. Due to excessive noise, one
of the forearm channels was removed. The EMG data was
windowed at 200ms with an overlap of 75ms to make an
effective timestep of 125ms. Four time-domain features were
extracted from each channel, namely mean absolute value,
waveform length, number of zero crossings, and number of
slope sign changes [3], [8].

Fig. 2. Placement of EMG electrodes on subject.

Motion capture data were recorded at 100Hz. After the
motion capture data was cleaned, the data were filtered using
a 4th-order high Butterworth high-pass filter with a cutoff
frequency of 15Hz to remove movement artifacts. Out of
the 226 trials, one trial had to be omitted from analysis due
to noisy marker data. To reduce data size, the data were
then downsampled to 8Hz. To allow a full window width for
the EMG data, the first sample was offset to 200ms before
sampling every 125ms afterwards. The 3 Euler angles for the
shoulder and 2 for the forearm were then extracted.

The data were reorganized so that the EMG features for
each channel and shoulder Euler angles could be used as
inputs to the neural network. The targets for the neural
network were the 2 forearm Euler angles described previ-
ously, corresponding to elbow flexion/extension and forearm
pronation/supination.

C. Neural Network Training

A two-layer TDANN was created using MATLAB’s neural
network toolbox. This type of network was used to effec-
tively capture the sequential nature of motion capture and
EMG time-series data. The network used a hidden layer
size of 20 and had an input delay of 7 [3]. Initial weights
and biases were randomly assigned. Repeated random sub-
sampling [3] was used to separate the data into training
(65%), validation (15%), and test (20%) sets. The network
used Early Stopping to prevent the network from overfitting
the data by discontinuing training if the performance of
the validation set failed to improve after 6 weight updates.
Otherwise, training would stop after 1000 weight updates.

III. RESULTS

The neural network was trained with 5 different sets of
inputs: 1) shoulder orientation, 2) EMG without forearm
channels, 3) EMG with all channels, 4) both shoulder ori-
entation and EMG without forearm channels, and 5) both
shoulder orientation and EMG with all channels. RMSE and
R2 values for each network are shown in Table I.

While all of the networks had small RMSE and R2 values
greater than 0.7 (indicative of a strong correlation), the
combined use of motion capture and EMG outperformed the



TABLE I
PERFORMANCE OF NEURAL NETWORK FOR 5 DIFFERENT SETS OF INPUTS. FE = FLEXION/EXTENSION, PS = PRONATION/SUPINATION.

TDANN Inputs Input Size FE PS

RMSE (◦) R2 RMSE (◦) R2

Shoulder orientation 3 Training 5.56 0.90 5.74 0.96
Validation 5.98 0.88 6.40 0.95

Test 5.89 0.89 6.48 0.95

EMG 28 Training 7.94 0.80 8.39 0.92
(without forearm) Validation 9.32 0.72 10.05 0.89

Test 9.18 0.75 9.59 0.90

EMG 48 Training 5.54 0.90 7.52 0.94
(all channels) Validation 8.27 0.79 8.66 0.92

Test 8.48 0.76 8.56 0.92

Shoulder orientation + 31 Training 3.16 0.97 3.88 0.98
EMG (without forearm) Validation 4.07 0.95 5.48 0.97

Test 4.11 0.95 5.38 0.97

Shoulder orientation + 51 Training 3.65 0.96 3.54 0.99
EMG (all channels) Validation 5.42 0.91 5.08 0.97

Test 5.57 0.91 5.10 0.97

networks with each input separate. For elbow flexion, the
combination of motion capture and EMG without the forearm
channels had lower RMSE (3.16, 4.07, 4.11) and greater
R2 values (0.97, 0.95, 0.95) for the training, validation, and
test sets, respectively, when compared with motion capture
alone (RMSE: 5.56, 5.98, 5.89; R2: 0.90, 0.88, 0.88) and
EMG without forearm channels alone (RMSE: 5.96, 7.74,
7.52; R2: 0.88, 0.81, 0.82). Similar results were obtained for
forearm pronation/supination.

Furthermore, the results show that when forearm EMG
was added, the network performed slightly better for forearm
pronation/supination (RMSE: 3.54, 5.08, 5.09; R2: 0.99,
0.97, 0.97). We did not see an improvement in elbow
flexion/extension after forearm EMG was added (RMSE:
3.65, 5.42, 5.67, ; R2: 0.96, 0.91, 0.91).

Fig. 3 depicts the outputs of the TDANNs compared
to the actual elbow flexion/extension and forearm prona-
tion/supination joint angles for one of the target reaches.

IV. DISCUSSION

The low error and the high correlation of the network can
be attributed to the use of a TDANN which takes successive
timesteps of data as inputs and the fact that the reaching
task only involved a particular kind of reaching. This type of
network is better-suited for time-series data, and we suspect
this to be the reason for the better predictive results when
compared to the cascade-correlation neural network used by
Kaliki [6]. Since training is done offline, a neural network is
well-suited for online usage since outputs require a relatively
small number of multiplications of the inputs and weights.

While the reaching workspace itself was well-represented
by the targets, the reaching task was the same for every target
(start with elbow bent at 90◦, palm down, reach to a vertical
handle). This could explain the relatively small performance
gain achieved by adding forearm EMG to predict prona-
tion/supination. Elbow flexion/extension likely did not see

a performance gain from adding forearm EMG due to the
larger influence of the biceps and the omitted noisy EMG
channel over brachioradialis. Different and more complex
types of movements such as those used by Pulliam [3] will
likely lower the performance of the TDANN. However, our
preliminary results suggest that the incorporation of shoulder
orientation as one of the inputs in the TDANN could improve
the results reported by Pulliam. In addition, incorporation of
muscles corresponding to targeted muscle reinnervation sites,
such as the forearm, may have a more pronounced effect.

It is unknown whether it is necessary for the predicted
angles to be 100% accurate or if “body English” would
be enough to compensate for the error. Though our results
achieved small error, the time-series predictions were noisy,
and may need to be constrained in order to be feasible
for prosthesis control. Metrics that measure how much the
prosthesis deviates from unimpaired reaching will need to
be explored. Joint angle and angular velocity constraints will
also need to be applied. State estimation techniques such as
Kalman filtering may also minimize error.

Since many of the muscles in the arm work synergistically
when reaching, both knowledge about the orientation of a
segment and the relative force of the muscles should present
unique information about the kinematics of the rest of the
arm. While our neural network does not elucidate the innate
muscular synergies of reaching, nor does it directly include
any information about the dynamics of the arm, it does
perform fairly well at predicting the joint angles of the distal
arm. However, future study into the actual neural control
strategies implemented by our central nervous system may
lead to even more precise kinematic control.

V. CONCLUSIONS

In this paper we have shown that by combining the inputs
of shoulder orientation and EMG we can achieve better
results in predicting the angle of elbow flexion/extension
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Fig. 3. Results for Flexion/Extension (a) without forearm EMG, and (b) with forearm EMG, and Pronation/Supination (c) without forearm EMG, and
(d) with forearm EMG over a single trial. SO = Shoulder Orientation, xF = without Forearm.

and forearm pronation/supination in reaching movements.
Furthermore, the results suggest that the incorporation of
EMG from targeted muscle reinnervation sites may improve
the prediction of distal joint kinematics. While these results
are preliminary, this combination of inputs could potentially
improve the prediction of multiple DOF-movements, such as
in reaching.

Ultimately, the goal of this research is to implement
multiple DOF-control strategies in transhumeral prostheses.
Future work will investigate more complex arm movements
from more subjects and control strategies that better represent
the interaction between the nervous system and the arm.
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